Learning and Generalization of Abstract Semantic Relations: Preliminary Investigation of Bayesian Approaches
نویسندگان
چکیده
A deep problem in cognitive science is to explain the acquisition of abstract semantic relations, such as antonymy and synonymy. Are such relations necessarily part of an innate representational endowment provided to humans? Or, is it possible for a learning system to acquire abstract relations from non-relational inputs of realistic complexity (avoiding hand-coding)? We present a series of computational experiments using Bayesian methods in an effort to learn and generalize abstract semantic relations, using as inputs pairs of specific concepts represented by feature vectors created by Latent Semantic Analysis.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملThe Effect of Semantic Mapping as a Vocabulary Instruction Technique on EFL Learners with Different Perceptual Learning Styles
Traditional and modern vocabulary instruction techniques have been introduced in the past few decades to improve the learners’ performance in reading comprehension. Semantic mapping, which entails drawing learners’ attention to the interrelationships among lexical items through graphic organizers, is claimed to enhance vocabulary learning significantly. However, whether this technique suits all...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010